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Introduction

This report summarizes some of the work carried out at the University
of Rhode Island in its Sea Grant program for estuarine modelilng, and
updates parts of the engineering effort in this discipline. Specifically,
a numetical model of the convective—diffusive equation of mass conservation
15 developed for the most general applications, and is coupled with a
previously developed tidal-hydrodynamic model of Marragansett Bay (Fig. 1).
The computer scheme is then applled to a practical problem, the simulation
of the temporal and spatial dispersal of a marked fluid introduced into the
Bay at a specific site. Thus an indication of the fate of a foreiga
substance, which might represent sewage or heated water, can be gained
at low cost, and such infermation can be used in the public and private
decislion-making process.

The model of water flow is basically the numerical scheme developed
by Leendertse (1967), which was adapted te Narragansett Bay by using
the appropriate lecal geometry, bathymetry, river flow data and tidal
information as reported by Hess and White (1974). The constituent equation
for conservation of mass is similar to that proposed by Leendertse (1%70).

To date, the model derived herein has been put to general uses.

Mass dispersal from several sections around Narragansett Bay was used as
a physieal parameter in a simulation by sKramer (in preparaticn) of the
daily spatial distribution of phytoplankton and zocplankton. The concen-—
tration of winter flounder larvae in Niantic Bay, Comnecticut, and its
environs was modeled by Hess et al. (1975). And Alfanc {1973} looked at
what happened to heated water from the proposed site of a nuclear electric

power plant on Narragansett Bay.
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Narragansett Bay.



The Convective - Diffusive Equation

Hydrodynamic inputs are used to simulate the temporal and spatial
fate of a species of sclute in the water. The conservation of mass equation

for any specles, or constituent, c¢ {mass per unit-volume), is

ac 3
2t T ox e -0

K%—i-)+‘g-§(vc—ny:—;)+-:-z—(wc—ng—§)-q )
Digcussion of turbulent transfer mechanisms is passed over here, and
the assumption of simple Fickian diffusion is made, Furthermcre, cross—
products are neglected and the diffusion coefficlent, 0, is assumed to be
a vector quantity. Internal mags-change processes, such as decay or
radiation, are representated by q. Molecular viscesity has heen ignored.
The present model assumes that a hydrodynamic model will provide
current velocity input. Since the tidal model discussed above is to be
used, equation 1 must be integrated from the bettem of the water column

{(z = -h) to the water surface (z = n). Letting
H=sn+h
the result is:

3 3 ac ] ac ., _
oy HC + . H{AUC - Dx ™ ) + 5y H{AVC - Dy 3y ) = qH 2)

where U, ¥, and C are the vertically-averaged values of the two current
vectors and the mass concentration, respectively (see Appendix A). These

are evaluated at each grid square (Fig. 2).

The convection factor, A, arises from the non—uniformitf of U and C
over the vertical. Note that if elther 11 or C iz independent of depth,
& 1s unity. A number of examples have occurred from bilolegical applications.
The larvae of certain fish species tend to be found in the lower half of

the water ecolumn, where the currents are leas than at the surface, for
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Figure 2. The grid network for Narragansett Bay.
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example. In such a ¢ase 4 will be less than unity, but most likely by
only a few percent. The opposite is true for the larvae of lobster, which
are found primarily within the top meter of the water column. Thus a
simulation of lobster larvae dispersal would reguire a value of A greater
than unity. Note that biological concentrations are taken to be the
number per unit—vclume when all individuals are assumed to be of equal weight.

The numerical values of the diffusion coefficlents are found by using

the formula proposed by Taylor (1954} and transformed by Harleman (1966)

to glve
D= 20 ;;,}i UH/C
X [
D =20 gl2 VR/C
¥ [

where g 1s gravitational acceleration and Cc the friction constant of
Chezy. The diffusion coefficient is racalculated at all grids at each

time step.

The Finite - Difference Equations

The vertically-integrated equation is now put inte finite-difference
formulation for numerical solution. Equation 2 is split into two parts
to allow the use of an alternating direction method, in this case analogous
to that of Peaceman and Rachford (1955). The only restriction placed on
the numerical scheme chosen is that for the case of C = 1, it reduces to
the continuity equation in the hydrodynamic computations. Using the notation
¢ = c(t)
C'= C{t + kAt)
C'"= C(c + At}

mass conservation is



(first half time step)

2 geny .2 Ay o CA gy o
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AL n,ars AL n-%,m aLZ y ‘nHs,m n+l,m n,m
1
+ n L] L1l - " = L " T t
aLZ (# Dy )n-%,m (c n,m ¢ n—l,m) '+ @ +H )n,m (4}

The above scheme is not the only one admissible. For example, Iin the
first half time step, Dx rather than Dx' could be used without violating
continuity.

The equation for the first half time step (3) dieplays the unknown,
C', in conjunction with derivatives in only the x~direction. In equation
4, C" occurs only with y-direction derivatives. Thus, the two equations

alternate direction, and the implicit equations resulting can be selved by

Gaussian elimination. Consider equation 3, which can be recast as
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P +5 - ] (5)

' + c’ + R C'
n ¢ n,m-1 Qm n,m m  n,mtl

where the coefficients Pm, Qm, and Ru1 contain known velocities and diffuaion
coefficients, and the term Sm is a function ©of the known concentrations C,
at the previous time step., The solution of equation 5 is described in
Appendix B.

Most of the simulations run with this scheme incorpcrate the numerical
peculiarity known as "upstream differencing"” in the convective terms. For
a constant depth and a uniform, positive velocity, central differencing

produces

e _w [CenntSS St w_ |
m 2 = c,. -cC
2 2 -1

X~ AL (6)

However, at grids adjacent to sources, the upstream concentration computed
with central differencing will be negative; morecver, an unrealistic oscil-
lating solution will propagate upstream. To eliminate these effects, the

concentration immediately upstream, rather than the average over two grids,

is used 1n equation 6.

Hence,
3¢ _ W
HU sx = AL [Cm - Cm—lJ for U > 0
3C m |
d = . 22 -
an HU % AL JF 1 CmJ for U < 0

In general,
& _ 1 aC_ + (l-a) C C
3% AL n O Gy ~ BG - U-BX G 1

so that central differencing means o = g = 0. For the case of positive U,

upstream differencing results when o« = 1, § = 0. Other cases use a weighted
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upstream differencing scheme with ¢ = 3/4, 8 = 1/4 for this example.
Upstream differencing suppresses negatlve values of concentration, but
adds greatly to the effective diffusfion. It may be shown that the diffusion

coefficient, D*, can be expressed as
D* = D + % |U[AL

Even with this large effective coefficient, diffusion is much less important
as a transport mechanism than convection, which is usually at least one order
of magnitude larger. Upstream differencing is used for the present

investigation.

Boundary Conditions

The mathematical problem is properly posed when the Initial and
boundary conditlons are set. For the present study the Bay Ils assumed
to have no marked fluid at the start of the run. The least complex
boundary condition is to require zero concentration there for all time.
While this 1s suitable for certain geometrics and constitutents, it falls
for the present application, and a better approximation must be proposed.

Since the marked fluid originates within the modeled region, It will
approach the boundary with a negative gradient (Fig. 3a). The boundar}
condition proposed for this case {at ebb in Narragansett Bay at Rhode
Island Sound, and at flood at Mount Hope Bay) is found by assuming that the
curve C{x,t) is locally linear and approaches the boundary at M = ma + 1]
by pure translation. Then the boundary conditiom 1is then computed from

the interior field ag

UAt UAt
* = o> - =Bk
¢ mati 2AL cma +a 2AL ) cma+1



Cma
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ma
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1 | Cp
C=1/2{Cm+Cp) | _r~cbt
-172(Cp-Cm) i C-Cpel
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! |
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Figure 3. Boundary conditions showing (a)} the linear
assumption at outflow, and (b) the varlation over a
full cycle and the decreasing exponential assumption
at inflow.
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This method of specifying the boundary has worked well without affecting
the stability of the computation scheme.

The boundary conditions at inflow are more difficult to compute.
Because of the tidal characteristics of Narragansett Bay, the velocity
at the mouth is closely approximated by a sine curve. During ebb, or
outflow, the concentration at the boundary due to an Interior scurce can

be approximated by Fig. 3b

2nt

Eg(cm + CP) - %(Cp - Cm) cos

At flood the concentration is assumed to be a decreasing exponential as

depleted Rhode Island Sound water enters the Bay, so that

~bt
CF(t} Cp e
Multiplying by a sinusoidal velocity {flow rate), Integrating the appropriate
expressions over flood and ebb, and specifying that R is the fraction of
mass returning on fleod, omne finds
bt . [3:4 (Cm + Cp)
BC
P

1+ e
2
0.25 + b

where B is the ratio of the strength of the ebb current to the floos

current. When B and R are given and Cm and Cp are found, b can be calculated.

Thus, the boundary condition on inflow can be specified analytically.

The actual returning mass fraction has net been measured for Narragangett

Bay, although it has been found for the MNiantic River, a similar embayment,

by Hess, Sissenwine and Saila (1975) to be approximately 70 percent. At

fhode Island Sound, R is taken as 50 percent, and at Mount Hope Bay 71 percent.
The numerical scheme degcribed herein has been widely used by the

authors and others to model mass transport in several coastal waterways.

Stability is virtually assured when driven by a hydrodynamic model with
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the same time step. Accuracy i1s a function of time step and grid mesh
size and the quality of current vector input. A4nalytical distributrions
of concentrations can be modeled to desired accuracy for known values of
turbulent diffusion. Verification studies of the concentration medel are
not presently avallable. Preliminary model predictions by Kramer {in
preparation) indicate that gross features of diffusion and mixing are

accurately reproduced,

Multiple Time Steps

The pumerical computation scheme derived {Equations 3, 4) uses velocities
calculated in the hydrodynamic model and has the same time step, At. Howevér,
the equatien of mass conservation for a censtituent can be solved with high

- accuracy with a longer time step, using the intermediate velocity components
in a reformulated numerical efuation, as shown in Sissenwine, Hess and Saila
(1975).

The present equations, 3 and 4, are based on the continuity equations
in the hydrodynamic computations, and each conserves mass. Adding these
two equations and setting D_= DY =0, and C=C" = C" = 0 yield a third

equation which alse conserves mass

B' - H L L] 1 ,a__ Pty o
B tay WA i V4RV =0 @

but has an effective time step of 2At. Equation 7 can be used as a basis
for a new constituent equation, or the process can be continued te produce
even longer time steps. Using an effective time step of HAt, and
caleulating the coefficients once (employing one tidal cycle of currents

recursively), a real time reduction by a factor ¢f 10 has been attained.
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Cage Studies

The eoncentration model was put to use by simulating discharges into

Narragansett Bay at two locatioms, Quonset Point {grid N=7, ¥-31) and
Coggeshall Point (N=17, M=29), near the location of United States Navy
property at Melville. At the first lecation mass was Injected at a constant
rate for the entiré length of the simulatien, while at the second, injection
was constant for three tidal cycles and zero thereafter,

Mass was introduced at the Quonset Point location at a nearly constant
rate, so the concentration in that grid before convection or diffusion
increased by 268.8 units per hour, For example, if the units of concen-
tration were parcs per billion {(ppb}, then adding mass to the grid at the
rate of 43 pounds per hour at that point would increase the cencentration
at the rate of 268.8 ppb per hour.

The spreading of the disopleths around the Queonset Point source 1s shown
in Filgs. 4, 5 and 6. After 3 hours and high water slack is approached,
the threshold contour has moved north approximately 2 nautical miles although
the area of maximum concentration 1s located very close to the source. BSuc-
cessive drawings show the progress of the spread. The southerly position of
the isopleth of wvalue 50 has moved at the average rate cf 1.5 nautlcal miles
per day. The extention of the concentrate is primarily in the direction of
the predominant currents, or north-south, with lateral spread occurring at a
slower rate. BSpread Into the Bast Passage takes at least three tidal cycles.

The concentration at Fox Island (N=6, M=36), shown in Fig. 7, rises
rapidly after ten hours when the concentrate first spreads to the izland. If
mass 1 injected contlnuously into the Bay and there iz some constant percent-—
age removal rate (in this case 30 percent), there is some time at which the
concentration, averaged over a tidal cycle, will become constant. The model

was run for 20 cycles (about 40 minutes of IBM 360/55 time), but after tem
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days this egquilibrium had not been reached (Fig. 8). However, an approximate

curve can be firted through the tidal means, which is

C = 660 [I ~ 1l/exp{0.1 DAY ~ 0.025)].

Employing this relationship it can be seen that it requires about 23 days
for the concentration at Fox Island to reach 90 percent of equilibrium,
averaged over a tidal perdicd.

Mass was Injected into the Coggeshall Point locaticon at a nearly constant
rate for three tidal cycles, then the injections were ceased. As with the
previous location, the concentration without convection or diffusion was
increased by 268.8 parts per hour. In thia case the equivalent mass rate would
be 46 pounds per hour in that grid square If the concentration were measured
in ppb.

The isopleths are plotted in Figs. % through 12. By the end of the first
full tidal cycle there is significant concentration (more than 25 ppb} in
most of the upper East Passage. The region of highest concentration remains
small and near the point of injection. Afrer four tidal cycles the 25-ppb
isopleth has moved down toward Newport Harbor, and westward Into the West
Passage. The extention of the area is primarily north-south, as was the case
in the Quonset Point source.

After the end of the injection period, flushing quickly reduces the
peaks of concentration. At the source point (N=17, M=29) three days is
sufficient to reduce the mass to 10 percent of its maximum value (Fig. 13).
The loss, which appears to be exponential, is approximately 28 percent of the

mass from the injectiom point every two days.
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Figure 4. Concentrations in the West Passage for 12
hours during a continuous injection of mass just off

Quonset Point.
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| DAY 2 DAYS

Figure 5. Concentrations in the West Passage at one
and two days during a continuous Injection at Quonset
Point.



14

701

5 DAYS 0 DAYS

Figdfe 6. Concentrations in the West Passage after five
and ten days during a continuous injection at Quonset
Point.
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Figure 7. Concentration at Fox Island during the Quon-
set Point injection for the first 60 hours. B8ix hours
is required before significant concentrations occur at
the island which 1s two miles south of the injection
point, but the increase is rapid thereafter.
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CONCENTRATION AT FOX ISLAND
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Figure 8. Fox Island concentration for the first ten
days. Flattening of curve of averaged concentrations
indicates that equilibrium is being approached.
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3.1 HOURS 6.2 HOURS

Figure 9. Concentration at 3.1 and 6.2 hours in Narra-
gansett Bay due to injection at Coggeshall Point.
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Figure 10. Concentration in Narragansett Bay after 9.3

and 12.4 hours of injection at Coggeshall Point.
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Figure 11. Concentration in Narragansett Bay after one

and two full days. Injection ceases midway through the
second day.
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5 DAYS IO DAYS

Figure 12. Concentrations in Narragansett Bay after
five and ten full days. Rapid decrease of peak concen-—
trations shows that flushing is efficient.
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Figure 13. Concentration at Coggeshall Point, the place
of injection, for ten days. Decay is rapid when injec-
tion ceases —— about 15 percent of the remaipning mass

at that point is lost every day.
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Appendix A

Given the equation

de L B 3 3 3 3¢ 3 . 3c 3 dc
A et et g - —D ==L --%=D — =
e Taxue Poyve tapwe - 50D o~ 5y "2 % e 9 m

the Leibniz rule for differentiating within an Integral is most useful:

b

b
aF 3 b 3
L5 e2) de = o [ FGaz) dz - Flab) )+ FOx2) ™ 2)

Here the integration is from the bottom (z = -h) to the surface {(z = n).

Note also that (see Egleston and Dean, 1966, p. 20}

ot Ix By 3

The wvector component Fi in the surface normal direction, n,

is
F, | = F_ cos@ - F_ sin®
fl z X
n
but sing a23n
ax

i<

and cosd 2 1

so F, MF _dng {4}

F.=-F -%*F 5
The vertically-averaged quantitles may be defined as

% udz = U {6a)

=g ]
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;0

g Lwiz = (6b}
-h
A

H cdz = C (6¢)

where H = h + n. Therefore the velocities and concentration can be defined

in terms of theilr means

+

e(z)]

u=[1

v= {1+ f(2)]

e = [1+ g(z)]
Thus
n n n
I uedz = UC I {l+etgteg)dz = UCIH + [ egdz] = AHUC (7)
-h -h ~h

Integrating each term in equatien L, and further noting that

3h/dt = ufz = -h) = v(z = ~h) = w(-h) = O

n n
18, L3 - 3__ 3HC _ Bn
ag 92 = 5 |, 4z - c) 5o = cn 3% (8a)
~h -h
3 tueydz = = amuc - (ue) | 21 (8b)
h Ix 3x x
- n
i 3 an
I 5= (ve)dz = 2= AHVC - (vc) | (8e)
2y ay 3y
-h n
m 3 :
f 33 Wedz = (we) | (8d)
~-h n

Assuming that Dx and Dy are independent of depth,



n
I TR _p 2, M Sy | Bn
-h ax Dx ax dz x HDxC (Dx ) } L ax (Dx ax )_l ax
P2.p 384,22 oo 2 n _p By n
) ) ay 0% T Gy ay) L y y 3y _E ¥
n
! %;—Dz gﬁ-dz D %5-| -D %5
-h zzn ZZ_h
]
1 qdz = Hg
~-h

The four surface terms in {(Ba, b, ¢, d) can be grouped so

() 22 - ctmutny 22 - emivin -g—; +emwin = 0

by virtue of the surface condition (3). Also, the surface and bottem
terms in 8e, £, g are simply the turbulent flux normal to the top and

bottom surfaces (c.[. equations 4 and 5), which equals zero. Thus

3 El aC B
Y HC + P H{AUC - Dx ™ o+ By H{AVC - D

8

= qH
vy oy} =9

iz the wvertically-integrated form of the mass equation.

Appendix B
The general recursive relation at grid m is

P + + =
m Cm—l Qm Cm Rm cm—! Sm

Consider the first computational grid in the row at the lower {value of
the index m) end a8 m = ma = 2. If the boundary is open {water-bound),
then Cl is specified. 1If closed, P2 = 0 and C1 may have any value. Then

equation 1 can be recast as C2 in. terms of c3,

(8e)

(8f)

(Bg)

(8n}

(L



c, = c, - = F, -G,C (3}

Now at the next grid, m = 3, equation 1 is

P3C2 + Q3C3 + RBCQ = 53

but with equation 2
P, (F, - G2C3) +QuCy +RC, =8

arT
53 - P3F2 i1

cC. = - C, =F, -G,.C
S T Q - By, 4 3 374

Continuing this trend, the simple relationship arises

Cm = Fm - Gmcm+1 {3
where
Sm - PmFm-l
= m > ma
qm - Pme—l
F
m (%)
L - Cm—l m = ma-1

- o—
Qm - Pme-l (5)

=0 m = ma-l

Proceeding up the grid row to the last interior square at m = mb,

cmb = Fmb - Gmhcmb+1
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Wow, if the boundary 1s copen, Cmb+1 is known, and, if closed

R =G =0, so0 C is again known. Then, using equation 3, the unknowns
'mb mb mhb

Cm are computed successively down the grid row.
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Computer Program SALT Listing

Note: The following constante are used in the program:
AU = 1.0 C7 = 200.*3QRT (AG)
€1 = AL®AT C8 = AU/AL

G2 = AT Cl0 = 2,%CT/{AL**2)
C3 = AL%%32

- -

SLUI UTENT S0 TENSTy ISTE M AL 4 Ay MHR Y

P G 2y S0 e SEPLHO G0 L (3uy 53y UP L3 50k, Y1 373012 VP(30,50)
I oof 02008 g 030,508 g TRIELDEE0 oA ) o MROE LTy MBOD{ 10D MPRINTILIOO]),
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PIMBETR G T, B0 CNP TR, G0 01,02 03,07, CH,010

PPMERMS TN ALY R(AR I P{ab )y L (A8 RT4B)ST{4R),KOMYDTE 3D
AL MSTO TLTNFE 8200 5 LU INEVE 20 o TEXETUL20) , TEXT TVIZD]
Leciral TESTYWRESCIN

Ja=pMHR

URAGS 10D,

TFENE T B0, I INIT/ALM Y JR=15

TE(NESTLH) L8 {NITA1IDNE JAasle

J=0

Ja=0

BRT L]

ELLE SIETHITE E

P ytshaY =]

CUtEgTE Cre ALL MY BOwh TR SEIfiMD HALF OF TIMESTEP

.
TFAISTEP, 50,10 €0 T 400

TFERuM Ty, Tan) Gn T £00

T S S LA R S TeR VU

I =HHOEAUMY /10300 =MSRIHE]TO0

+F SMADIRDMY F10DT —MSRORE O8I0 =M% 100

| =MBL{NM) =HSEEHELCOCCOO-MF10020-NF*] 00

TA=MSROH/LO
IR=MERC=10%] 4
Ll=1~1

LP=L+1
NFF=hF=]

RLUET RS

M M- 1

M=MNFF

CAMMAC= S&VPINs MY/ LABSIVRINGMIT+ERI+,.5
TEMP4=,5%{H{(Ny, Ml #H{ Ny MM} +SF {M;M)+%E {N+L,M))
TEWPE= S*{H[NyM] +H{ N, MM} +SEP{ M, MI+SEP{N+L1,#}])
TEMP22=CR*TEMP4*VPLN, ¥}

TEMPZA=CLO* ABRSIVI{NgMIIRTEMPR#%Z2/{CINyMI+CINeLy M)

DO 226 h=NKF,L

MM=N~]1

NANN=N+]

M¥=N=1

ALFAC*=.5% UINyMiZ(ABSIUINsM))+ERY+,.5
BETAC=—,S#U{NMM) /[ABSTUIN,MM) ) +ER 1 +.5
DELTACH—, SV P (MM M) SEABSIVRINM M) J¢ER)+.5
DELTAC=] .—GAMMAC
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GAMMAC=.52VP{N,M] JLARSIVPIN,M) | +ERD .5

TEMPL=1{,25% (B{NyM)+HINNME+HINy MM} ¢H{NN ;MM ) +SEP TNy MY ) /AT
TEMP2=( 25 (HIM, M) +HINNy B eH{ N, MM) sHINN,MM) F+SETN,M) } /AT
TEMPI= 5 [H{NN; M) 4H{NN, MM +SE (N,M)+SE {NNgMT)
TEMPI=TEMP4L

TEMPG=, 5% (H[NyM] +HIN, MMI+5F (NyMI+S5E (NNNsM1}

TEMPE= (BE(H{N;MM)+HINN ,MMI+SELN, M) +SEINSMM) )

TEMPE=, G#{HIN, M) ¢HINN M} +SELHN, M)+ SE{N, MMM} }

TFMpTI=TEMPR

TEMPA=, S%{H(Ng MI+HI N MMI*SEPINyMI+SEPTN+1 M)}

FIMPIO=CBATEMPIEVP{NN,M)

TEMP2 1= 1O%APS (VPINN, M} ATEMP 3% 2/ { CINyMI#CTNN, M) )
TTMP20=TEMFIZ?

TEMPZL=TEMP2]

TEMPR2=CASTEMPLEYR [Ny M)
TEMPZR=C10%ARSIVPINyM)IxTEMPE**¥2/{CINsMI+CENE1, M) )
TEMPZ4=C G TFMP SR N, MM]

TEMP2G=C L% ARS(LIIN, MM} ¥R TEMPEXX2/{C{N; MI+L (N, MM ] )
TEMPZ L= RTFMPLRULIM M)

TENPRT=CL0ARSLIIN, M) Y RYFMPEER2/{CIN,MI+C [Ny MMM}

P )=={[1a—DFLTACI*TEMP2O+TEMP2L)

UV STEMELGAMMACETEMP2 24 TEMP23-DELTACHTEMP20+TEMP 2]
D M1z (1= GEMMACIRTEMP2 2=TEMP 23

Sih)= —CNIR,MM)%({ (1 ,—BETAC)I*TEMP24L+TEMP25)
L4 r {r )i =TFMP2 +AL FACKTEMPZ2E-RETACXTEMOP2 4+ TEMP2T+YEMP 25}
2 #CN{H MMM B { L, —AL FAC)I*TEMP26—TEMP2T)

TLST=.FALSE,

TRIMUMLED, JAY TEST=,.TRUE,

TFLTESTY WRITF(&+1220) NeMe PINE 4 QEN) 4R IN) , S(N)
TFITFST) WRITE(E41200) NyMyTEMP1, TEMPZ

TR{TF ST WRITE(6,1200) N, M, TEMP20,TEMP 21, TEMP22,TEMP23
T#{TFS5T) WRITF({G,1200) NeMyTEMP24, TEMP25, TEMP2L,TFUP2T
TE{TFST) WRITELG,L200) NyMyALFAC+RETAC, GAMMAC,DELTAL
FORMATE /43X "Mt 1242X412+2%X0 TIELD.%s2X1)

TONTINUE

FINFFI=0,

LE JFEN=CNP{NFF M)

TFLTLSTY WRITFL(A,2200) NyMa AINFFI4CNPILP4M)

rre 260 N=NFyL

hM=h=i

Fl1=0(NI-PIMISB{NNY

ALNY=—{SIHN)+P{N}=A{NN]}/F]

N =RIMDISFL

rN 245 T=NF,L

AP=h+1

CNP{HMI=AINI—RINPECNP (NP, M)

TFITEST) WPITELE 12000 NyMyeCMINSMT  CHP{N,M]

*=N=-}

MLM=RUM+]

G Tr 208
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COMPUTE CNP ALONG COLUMNS IN FIRST HALF OF TIMESTER

400 IFINUM.EQ.NINDY GO TO 402

NSRCH=NAD(NUME /1000000

N =NETOINUMI/L10000 —NSRCH¥100
MF =NED{NUM) FLOO—NSRCH*10000-N*100
L =NRD{ MUK I —NSRCH*1000000-N*10003-MF*100

TA=NSRCH/10
TB=NSRCH-L10*TA
NM=N-1

NNN=N+]

Li=L-1

LeL=L+1

LP=Lt]

MEF  =MF-]
M=WEF
ALEAr= B®R{t MY/ LA TP { N M} 1 +FR}+.5
TEME&= ,5ETHIN MY #HINNMY$SF (8, M) #SE (N, ML)
TEMER= G (H{NG M 4H NN MY +SED{ M M+ SFEPLMN M1 )]
TEMOZD=C R*TRMPARUP (N, M)
TEMPZI=CLOTAPRSUPINGMEIETEMPORE DS (L[N, M)+C{ N9+ 1))

{0 A2} M=¥F .|

MMk sp ]

L3 R

hN=h=1

EFETAC =Ll ~-tLFAr

ALF AT = HEUDINGMY FLARS [P {NyM] J+ERI+.5
AETAC == SHUPLM M)/ {ARSTUP TNy MM +FR T+, 5
CAVMAD = 5% VIN,MI/LARSL VINMID+ER]+.5
DFLTACE— Sy (NP ML {ARSIVINM M) J TR+, 5

TERPI=l Pl Ny M+ HE N M +HLA, MY+ HINN M) J+SEP LN, M) ) FAT
TEMDPP ] o255 (F{ Mg WY+ H{NM A HHE N, MM HH{NN W0 4 SE (M M) ) FAT

TEMPIZTT VPG

TEMOT=( L (H{M ¥M] e HINN, MM 4ST IR, ME+SE (N, e
TEHP4= SR HING M) +H{MN, ME+SFE (MM 45F [NeMMM)}
TEwphe Ba(HI{MM Ml +HINNgMMI+SE (N ME+SEINN, M) )
TEMRE= 52 (H{N, M) EH{N,4M) £S5 (R MI#SECNNN M)
TEMET=TEMDE

FEMEA= (SR (HINGMI+HANN M} #SEP [N, MI+SEPIN,MEL]Y)

TEMPZO=CRRTEURIXYP (A, MH)

TEMPZ 1=C L% ARSIUP LN, MM = TEMPIRE2/ {CINGM) +CIN.MMI D
TEMPZO=TENFPZZ

TEMPZI=TFMP23

TEMPR2=CRETEMPLA:UP (N, My
TEMPZ3=CLO=APS{UPIN,M) J#TEMPR®e2/ [CINM)I+C (N, M+11 )
TEMP24=CHETEMPEHY (A M)

TEME2 S=C L0 ARSIVINN, M IRTEMPS 22/ (CINyMI+C (NN M)}
TEMPZo=CBRTEMPE*RVIN,M)

TEMP2Z T=C O#ARSIVIN M IRTEMP LR %2 /{CINyM}+CIMNNN,M]))

Pi{MI=—{(]1.,—PLTACI*TEMP20+TFMP2]1 )

GIMI=TEMPL +ALFACRTEMP22 +TEMP2I-BETACKTFMP20 +TEMPZL
RiM)=(1,-ALFAC)*TFMP22-TEMP23
SIMI=—CNLMNGMI%({1.=NELTAC) ®*TEMP24+TEMP251 +
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L CNIN MR =TEMPZ +GAMMACETEMP26 —DELTACETEMP244TEMP2THTEMP25)
2 H4CNINNNgMjE( (1, =CAMMAC )*TEMP26-TEMP2T)

TEST=.FALSE .

IFINUM,.EQ.JRY TEST=.TRUE.

IFITEST) WRITEI&41L200) NoyMePIMEQIMIRIMI,S{H}

TEFATEST) WRITE(L,1200) NyM, TEMPL,TEMPZ

LFITFSTY WRITE(G,1200) NeMy TEMP20,TEMP2L,TEMP22,TEMP22

1FEYFAT) WRITE(R,1200) N M, TEMP24,TEMP25, TEMP26 ., TEMP2ZT

[FITESTY) WEITFI&4+1200) M My ALFACyRETACGAMMAL,DELTAC

420 CONTINUF
PAMFF1=0,
ALMFF )= NPINyMFF)
IF{TESTY WRITEL&,120C) NeMy ATMFF),CNPIN,LP}
N0 440 N=Mb,L
M=
Fl=ivi=-P{NV]IRB(MY]
AfMP=—(S(MI4P[FHAIMM))FF]L
443 B{M}=RIM]/FL
M|
N0 445 T=WF |
wpD=M4 |
CHPINyMI=ATM)=BLMIZCNP (N MP}
TFITESTY WRITETGH 12908 Myl CNINMeMI yONPIN M)
4405 M=m—]
VLA VLR B
AT 400
&2 CONTINUF

PrIMNT MOT

[F(MSTLFRLLE GO TR 500
IEERET,FL MAXSTY GO TR 500
TFINSTANC LI P {NSTZTPY) GO T 52¢C
500 (CNTINUSE
TIME=FLUAT (NST) 24T/ 1A0D,
PRITE [€45024) NST,TIuF
5074 £ PRFTEIeL, CAVERAGED CONCFNTRATION FOP SECAND HALF TIMESTEP ', 15,
1 5Xs '"TIMF = ?,Fb.2y"HESL']
DA B0 M=1,NMAX
508 KUEVETIR) =N
M=0
REITE{6,60010 My (KONVRTIND sN=1, NMAX)
DB Mal, MuAX
S 5317 M=1,NMAX
S12 KUMYRTIND = (CNIN M1 4CNP NG M) IH L SHCMAGHS
TH{NSTLFQ.MAXST) WRITE(T,6002) (KONVRTINI (N=1,NMAX]
€002 FORMATEZ014)
510 WRITE(6,6001) My (KANVRTIND ,N=1, NMAX)
6001 FORMAT(IX,[2+1X+3014)
529 CONTINUE
600 CCNTINUE

RFETURN
FRR






