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Introduction

This report summarizes same of the work carried out at the University

of Rhode Island in its Sea Grant program for estuarine modeling, snd

updates parts of the engineering effort in this discipline. Specifically,

a numerical madel of the convective � diffusive equation of mass conservation

is developed for the most general applications, and is coupled with a

previously developed tidal-hydrodynamic model of Narragansett Bay  Fig. 1!.

The computer scheme is then applied to a practical problem, the simulation

of the temporal and spatial dispersal of a marked fluid introduced into the

Bay at a specific site. Thus an indication of the fate of a foreign

substance, which might represent sewage or heated water, can be gained

at low cost, and such information can be used in the public and private

decision-making process.

The model of water flow is basically the numerical scheme deve1oped

by Leendertse �967!, which was adapted to Narragansett Bay by using

the appropriate local geometry, bathymetry, river flow data and tidal

information as reported by Hess and White �974!. The constituent equation

for conservation of mass is similar to that proposed by Leendertse �970!,

1'o date, the model derived herein has been put to general uses.

Ness dispersal from several sections around Narragansett Bay was used as

a physical parameter in a simulation by <ramer  in preparation! af the

daily spatial distribution of phytoplankton and zooplankton. The concen-

tration of winter flounder larvae in Niantic Bay, Connecticut, and its

environs was modeled by Hess et al. �975!. And Alfano �973! looked at

what happened to heated water fram the proposed site of a nuclear electric

power plant an Narragansett Bay.
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Figure 1. Narragansett Bay.



The Convective - Diffusive E uation

Hydrodynamic inputs are used to simulate the temporal and spatial

fate of a species of solute in the water. The conservation of mass'equation

for any species, or constituent, c  mass per unit-volume!, is

Bc B Bc a Bc B Bc� + �  uc � D � ! +  vc � D � ! + �.  wc � D � ! q
Bt Bx x Bx By y By Bz z Bz

Discussion of turbulent transfer mechanisms is passed over here, and

the assumptio~ of simple Fickian diffusion is made, Furthermore, cross-

products are neglected and the diffusion coefficient, D, is assumed to be

a vector quantity, Internal mass-change processes, such as decay or

radiation, are representated by q. Molecular viscosity has been ignored.

The present model assumes that a hydrodynamic model will provide

current velocity input. Since the tidal model discussed above is to be

used, equation 1 must be integrated from the bottom of the water column.

 z -h! to the watet' surface  z n!. Letting

H = n + h

the result is:

� HC + � H AUC - D � ! + � H A.VC � D � ! = qHB a BC BC
Bt Bx x Bx By y ay �!

where U, V, and C are the vertically-averaged values of the two current

vectors and the mass concentration, respectively  see Appendix A!. These

are evaluated at each grid square  Fig. 2!.

The convection factor, A, arises from the non-uniformity of U and C

over the vertical, Note that if either U or C is independent of depth,

A is unity. A number of examples have occurred from biological applications,

The larvae of certain fish species tend to be found in the lower half of

the water column, where the currents are less than at the surface, for
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example. In such a case A will be lees than unity, but most likely by

only a few percent. The opposite ie true for the larvae of lobster, which

are found primarily within the top meter of the water column. Thus a

simulation of lobster larvae dispersal would require a value of A greater

than unity. Note that biological concentrations are ta'ken to be the

number per unit-volume when all individuals are assumed to be of equal weight.

The numerical values of the diffusion coefficients are found by using

the formula proposed by Taylor �954! and transformed by Harleman �966!

to give

D 20 g UH/Cx c

D = 2Q g VH/C
y C

where g is gravitational acceleration and C the friction constant ofc

Chery. The diffusion coefficient is recalculated at all grids at each

tine step.

The Pinite � Difference E nations

The vertically-integrated equation is now put into finitedifference

formulation for numerical solution. Equation 2 is split into two parts

to allow the use of an alternating direction method, in this case analogous

to that of Peaceman snd Rachford �955!. The only restriction placed on

the numerical scheme chosen is that for the case of C = 1, it reduces to

the continuity equation in the hydrodynamic computations. Using the notation

C - C t!

C'= C t + 4ht!

C"= C t + At!

mass conservation is



 first half time step!

I r' H'C'! �  HC! + �  H U' C'! � �  H U' C'!2 A A
At n,m At n,m AL nr~ AL n,m~

12 E'D '!  C' � C' ! + �  H'D '!  C' � C' !
x n,m+Lr nm+1 nm 2 x n,m-4 nm nm1

+ �  !Hrc! - �  Herc! � �  HD !  c � c !A A 1
AL num AL nri m 2 V n~m n+1m nm

AL

+  HD !  C � C ! !r q + q'!  H + H'! �!

 s ec ond hei f t ime step!

 H" C"! �  H'C'! + �  H'V'C'! � �  H'V'C'!

 H'D '!  C' � C' ! +  H'D '!  C' � C' !1 r r 1
2 x n,m+!i n,mr-l n,m A 2 x n,mA n,m n,m-lAL

 H'V''C''! � �  H"D "!  C" � C" !
n-Q,m 2 y n+L!,m n+I,m n,mAL

The above scheme is not the only one admissible. For example, in the

first half time step, D rather than D ' could be used without violatingx x

continuity.

The equation for the first half time step �! displays the unknown,

C', in con!unction with derivatives in only the x&irectlon. In equation

4, C" occurs only with y-direction derivatives. Thus, the two equations

alternate direction, and the implicit equations resulting can be solved by

Gaussian elimination. Consider equation 3, which can be recast as



�!P C + 0 C' + R C' + S Q
m n,m-l m n,m m n,m+1

where the coefficients P , Q , and R contain known. velocities and diffusion

coefficients, and the term S is a function of the known concentrations C,

at the previous time step. The solution of equation 5 is described in

Appendix B.

Host of the simulations run with this scheme incorporate the numerical

peculiarity known as "upstream differencing" in the convective terms, For

a constant depth and a uniform, positive velocity, central differencing

produces

BC HU I m+1 m m rn-1 HUpC +C C +C

3X 4L L 2 2 24L L m+1 rn 1 �!

However, at grids adjacent to sources, the upstream concentration computed

with central differencing will be negative; moreover, an unrealistic oscil-

lating solution will propagate upstream. To eliminate trrese effects, the

concentration innnediately upstream, rather than the average over two grids,

is used in equation 6.

Hence,

aC HUHU � = C � C for U > 0
Sx 4L [ m m lj

and HU = � C � C for U < 09C HU
Bx 4L sr+1 m

In general,

AC + �-a! C � BC � �-B! C
BC 1
Bx 4L rn m+1 m m-1

so that central differencing means rr B = 0. For the case of positive U,

upstream differencing results when <r = 1, g = 0. Other cases use a weighted



upstream differencing scheme with a 3/4, S 1/4 far this example.

Upstream differencing suppresses negative values of concentration, but

adds greatly to the effective diffusion. It may be shown that the diffusian

coefficient, D*, can be expressed as

D* - n+ N !V~AL

Even with this large effective coefficient, diffusion is much less important

as a transport mechanism than convection, which is usually at least one order

of magnitude larger. Upstream differencing is used for the present

investigation.

Bounder Conditions

The mathematical problem is properly posed when the initial and

boundary conditions are set. For the present study the Bay is assumed

to have no marked fluid at the start of the run. The least complex

boundary condition is to require zero concentration there for all time

While this is suitable for certain geometries and canstitutents, it fails

for the present application, and a better approximation must be proposed.

Since the marked fluid originates within the modeled region, it will

approach the boundary with a negative gradient  Fig. 3a!. The boundary

condition proposed for this case  at ebb in Narragansett Bay at Rhode

Island Sound, and at flood at Mount Hope Bay! is found by assuming that the

curve C x,t! is locally linear and approaches the boundary at M ~ ma + 1

by pure translation. Then the boundary condition is then computed from

the interior field as

UAt C + 1 UAt
ma+1 2AL ma 2AL ma+1
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Figure 3. Boundary conditions showing  a! the linear
assumption at outflow, and  h! the variation over a
full cycle and the decreasing exponential assumption
at inflow.



This method of specifying the boundary hes worked well without affecting

the stability of the computation scheme.

The boundary conditions at inflow are more difficult to compute.

Because of the tidal characteristics of Narragansett Bay, the velocity

at the mouth is closely approximated by a sine curve. During ebb, or

outflow, the concentration at the boundary due to an interior source can

be approximated by Pig. 3b

Q C + C ! � 4 C � C ! cos- 2vt
m p p m T

At flood the concentration is assumed to be a decreasing exponential as

depleted Rhode Island Sound water enters the Bay, so that

C  t! C e
p

Multiplying by a sinusoidal velocity  flow rate!, integrating the appropriate

expressions over flood and ebb, and specifying that R is the fraction of

mass returning on flood, one finds

-bt 4R  C + C !1+

0.25 + b

where B is the ratio of the strength of the ebb current to the floos

current. When B and R are given and C and C are found, b can be calculated.
m p

Thus, the boundary condition on inflow can be specified analytically.

The actual returning mass fraction has not been measured for Narragansett

Bay, although it has been found for the Niantic River, a similar embayment,

by Bess, Sissenwine and Saila �975! to be approximately 70 percent. At

Rhode IsLand Sound, R is taken as 50 percent, and at Mount Hope Bay 7l percent,

The numerical scheme described herein has been widely used by the

authors and others to model mass transport in several coastal waterways.

Stability is virtually assured when driven by a hydrodynamic modeL with



the same time step, Accuracy is a function of time step and grid mesh

size and the quality of current vector input. Analytical distributions

of concentrations can be modeled to desired accuracy for known values of

turbulent dif fusion. Verification studies of the concentration model are

not presently available. Preliminary model predictions by Kramer  in

preparation! indicate that gross features of diffusion and mixing are

accurately reproduced.

Hulti le Time Ste s

two equations and setting D = D = 0, and C = C' = C" = 0 yield a third
y

equation which also conserves mass

II

ax
+ �  H + H'�' + �  HV + H'V"! 0

3y �!

but has an effective time step of 2dt. Equation 7 can be used as a basis

for a new constituent equation, or the process can be continued to produce

even longer time steps. Using an effective time step of 6dt, and

calculating the coefficients once  employing one tidal cycle of currents

recursively!, a real tirae reduction by a factor of 10 has been attained.

The numerical computation scheme derived  Equations 3, 4! uses velocities

calculated in the hydrodynamic model and has the same time step, dt. However,

the equation of mass conservation for a constituent can be solved with high

accuracy with a longer time step, using the intermediate veloci,ty coraponents

in a reformulated numerical equation, as shown in Sissenwine, Hess and Sails

�975!.

The present equations, 3 and 4, are based on the continuity equations

in the hydrodynamic computations, and each conserves mass. Adding these
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Case Studi.es

The concentration model was put to use by simulating discharges into

Narragansett Bay at two locations, Quonset Point  grid N~7, M-31! and

Coggeshall Point  N 17, M 29!, near the location of United States Navy

property at Melville. At the first location mass was in]ected at a constant

rate for the entire length of the simulation, while at the second, injection

was constant for three tidal cycles and zero thereafter,

Mass was introduced at the Quonset Point Location at a nearly constant

rate, so the cancentration in that grid before convection or diffusion

increased by 268,8 units per hour, For example, if the units of concen-

tration were parts per billion  ppb!, then adding mass to the grid at the

rate of 43 pounds per hour at that point would increase the concentration

at the rate of 268.8 ppb per hour.

The spreading of the isopleths around the Quonset Point source is shown

in Figs. 4, 5 and 6. After 3 hours and high water slack is approached,

the threshold contaur has moved north approximately 2 nautical miles although

the area of maximum concentration is located very close to the source. Suc-

cessive drawings show the progress of the spread. The southerly position of

the isopleth of value 50 has moved at the average rate af 1.5 nautical miles

per day. The extention of the concentrate is primarily in the direction of

the predominant currents> or north-south, with lateral spread occurring at s

slower rate. Spread into the Bast Passage takes at least three tidal cycles.

The concentration at Fax Island  N=6, M=36!, shown in Fig. 7, rises

rapidly after ten hours when the concentrate first spreads to the island. If

mass is in]ected conti~uously into the Bay and there is some constant percent-

age removal rate  in this case 50 percent!, there is some time at which the

concentration, averaged over a tidal cycle, will become constant. The model

was run for 20 cycles  about 40 minutes of IBM 360/55 time!, but after ten



days this equilibrium had not been reached  Fig. 8!. However, an approximate

curve can be fitted through the tidal means, which is

C = 660 [I � I/exp�,1 DAY - 0,025!]

Employing this relationship it can be seen that it requires about 23 days

for the concentration at Fox Island to reach 90 percent of equilibrium,

averaged over a tidal period .

Mass was injected into the Coggeshall Point location at a nearly constant

rate for three tidal cycles> then the injections were ceased. As with the

previous location, the concentration without convection or diffusion was

increased by 268.8 parts per hour. In this case the equivalent mass rate would

be 46 pounds per hour in that grid square i.f the concentration were measured

in ppb.

The isopleths are plotted in Figs. 9 through 12. By the end of the first

full tidal cycle there is significant concentration  more than 25 ppb! in

most of the upper East Passage. The region of highest concentration remains

small and near the point of injection. After four tidal cycles the 25-ppb

isopleth has moved down toward Newport Harbor, and westward into the West

Passage. The extention of the area is primarily north-south, as was the case

in the Quonset Point source.

After the end of the i~jection period, flushing quickly reduces the

peaks of concentration. At the source point  N=17, M 29! three days is

sufficient co reduce the mass to 10 percent of i.ts maximum value  Fig. 13!.

The loss, which appears to be exponential, is approximately 28 percent of the

mass from the injection point every two days.
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Figure 4. Concentrations in the West Passage for 12
hours during a continuous injection of mass just off
Quonset Point.
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Figure 5. Concentrations in the West Passage at one
and two days during a continuous injection at quonset
Point.
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Figure 6. Concentrations in the West Passage after five
and ten days during a continuous injection at Quonset
Point.
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Figure 7. Concentration at Fox Island during the quon-
set Point in]ection for the first 60 hours. Six hours
is required before significant concentrations occur at
the island which is two miles south of the in]ection
point, but the increase is rapid thereafter.
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Figure 9. Concentration at 3.I and 6.2 hours in Narra-
gansett Ray due to injection at Coggeshall Point.
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Figure 10. Concentration in Narragansett Bay after 9.3
and 12.4 hours of injection at Coggeshall Paint.
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Figure 11. Concentration in Narragansett Bay after one
and two full days. Injection ceases midway through the
second day.
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Figure 12. Concentrations in Narragansett Bay after
five and ten full days. Rapid decrease of peak concen-
trations shows that flushing is efficient.
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Figure 13. Concentration at Coggeshall Point, the place
of injection, for ten days. Decay is rapid when injec-
tion ceases � about 15 percent of the remaining mass
at that point is lost every day.



22

~Add* A

Given the equation

the Leibniz rule for differentiating within an integral is most useful;

aF a ab aa x,z! dz - � F x,z! dz � F x,b! � + F x,z!�
a ax ax a ax ax

�!

Here the integration is from the bottom  z -h! to the surface  z = n!.

Note also that  see Zgleston and Dean, 1966, p. 20!

an an anw � u � v
at ax ay

The vector component F in the surface normal direction n
i 'd

is

F ~ ~ F cos6 � F sin8
n z X

n

but sinB =-�~ an
ax

and cos0 =.= 1

so F�-.= F � � Fan
z ax x

At the bottom

F, =-F � � -Fah
n z ax x

The vertically � averaged quantities may be defined as

n
udz ~U

H h
�a >

ac a a a a ac a ac a ac� + uc+ vc+ � wc - � D � � � 1> � � � D � = l �!
ax ay at ax x ax ay y ay az z az
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I vdz~VH �b!

n
' cdz = C

H �c!

u [I + e z!]

v [I + f z!]

~ - [I+ g z!]

Thus

n n
ucdz = UC I  I+e+g+eg!dz = UC[H + I egdz]� : AHUC

-h -h -h

Integrating each term in equation l. and further noting that

Bh/Bt = u z = -h! = v z -h! = w -h! - 0

',Bc B� dz � ~ cdz - c n! � = � � c n! � nBHC
Bt Bt Bt Bz  Sa!

I  uc!dz = � AHUC �  uc!B Bn
Bx BK Bx

n

 Sb!

 vc!dz AHVC �  vc!
' B B B

By By By  Sc!

n
I � wcdz =  wc!

Bz-h n
 881

Assuming that D and D are independent of depth,
K y

where H = h + n. Therefore the velocities and concentration can be defined

in terms of their means
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� D � dz � HD C �  D � ! i � �  D � !a ac ac Bn ac a

h Bx x x ax Bx x ax ax
n

 Be!

na ac a� D � dz = HD C �  D � ! I � �  D � !ac an ac an
ay y ay ay y y ay ay y ay ay

 Bf!

i � Ddz=D  � D" a ac ac ac
az z az z az z az-

n
 Bg!

n qdz = Hq
-h

 Bh!

The four surface tetms in  Ba, b, c, d! can be grouped so

-c n! � � c n!u n! � � c n!v n! � + c  n!w n! - Dan an an
ax ax ay

by virtue of the surface condition �!. Also, the surface and bottom

terms in Be, f, g are simply the turbulent flux normal to the top and

bottom surfaces  c.f, equations 4 and 5!, which equals zero. Thus

� HC + � H AUC � D � ! + � H AVC � D � ! qHa a ac BC
at ax x Bx By y ay

is the vertically-integrated form of the mass equation,

Ay~endix B

The general recursive relation at grid m is

P C + Q C + R C = Sm-1 m m m m-1 m

Consider the first computational grid in the row at the lower  value of

the index m! end as m ~ ma 2. If the boundary is open  water � bound!,

then C is specified. If closed, P = 0 and C may have any value. Then
1

equation ! can be recast as C in terms of C
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S2 � P2 R2 C3

2Q l Q2223

Now at the next grid, m = 3, equation l is

3 2 3 3 3 4 3

but with equation

P F-GC!+QC+RC=S

or

Continuing this trend, the simple relationship arises

C F � G C

where

m > ma

C m-l

Q P G

m - ma- 

Prooeeding up the grid row to the last interior square at m ~ mb,

C ~ F � G C
mb mb mb mb+1

S3 � P3F
C

3 '3'2

S � P F
m m m-l

Q � P Gm m m � 1

R

Q � PG 4 3 34
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Naw, if the boundary is open, C is known, and, if closedmb+1

R - G = 0, so C is again known. Then, using equation 3, the unknowns
mb mb ' mb

C are computed successively down the grid row.
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